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Phenomenology of wall-bounded Newtonian turbulence

Victor S. L’vov,* Anna Pomyalov,T and Ttamar Procaccia®
Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

Sergej S. Zilitinkevich®

Division of Atmospheric Sciences Department of Physical Sciences, University of Helsinki, 00101 Helsinki, Finland

(Received 27 June 2005; published 19 January 2006)

We construct a simple analytic model for wall-bounded turbulence, containing only four adjustable param-
eters. Two of these parameters are responsible for the viscous dissipation of the components of the Reynolds
stress tensor. The other two parameters control the nonlinear relaxation of these objects. The model offers an
analytic description of the profiles of the mean velocity and the correlation functions of velocity fluctuations in
the entire boundary region, from the viscous sublayer, through the buffer layer, and further into the log-law
turbulent region. In particular, the model predicts a very simple distribution of the turbulent kinetic energy in
the log-law region between the velocity components: the streamwise component contains a half of the total
energy whereas the wall-normal and cross-stream components contain a quarter each. In addition, the model
predicts a very simple relation between the von Kdrmén slope « and the turbulent velocity in the log-law region
v* (in wall units): v*=6k. These predictions are in excellent agreement with direct numerical simulation data

and with recent laboratory experiments.
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I. INTRODUCTION

The tremendous amount of work devoted to understand-
ing the apparent experimental deviations from the classical
phenomenology of homogeneous and isotropic turbu-
lence[1,2] tends to obscure the fact that in many respects this
phenomenology is almost right on the mark. Starting with
the basic ideas of Richardson and Kolmogorov and continu-
ing with a large number of ingenious closures, one can offer
a reasonable set of predictions regarding the statistical prop-
erties of the highly complex phenomenon of homogenous
and isotropic turbulence. Thus one predicts the range of
scales for which viscous effects are negligible (the so-called
“inertial range” of turbulence), the crossover scale below
which dissipative effects are crucial (also known as the “Kol-
mogorov scale”), the exact form of the third-order structure
function S3(R) (third moment of the longitudinal velocity
difference across a scale R), including numerical prefactors,
and an approximate form of structure function of other or-
ders S,(R) (predicted to scale like R"* but showing devia-
tions in the scaling exponents which grow with the order,
giving rise to much of the theoretical work alluded to above).
In particular much effort has been devoted to calculating the
so-called “Kolmogorov constant” C, which is the prefactor
of the second-order structure function, with closure approxi-
mations (see, e.g., Refs. [3,4]) coming reasonably close to its
experimental estimate. Notwithstanding the deviations from
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the classical phenomenology, one can state that it provides a
reasonable first-order estimate of many nontrivial aspects of
homogeneous and isotropic turbulence. In contrast, the phe-
nomenological theory of wall-bounded turbulence is less ad-
vanced. In reality most turbulent flows are bounded by one
or more solid surfaces, making wall-bounded turbulence a
problem of paramount importance. Evidently, a huge amount
of literature dealt with problem, with much ingenuity and
considerable success [5]. In particular one refers to von
Karmén’s log law of the wall which describes the profile of
the mean velocity as a function of the distance from the wall.
It appears, however, that the literature lacks an analytically
tractable model of wall-bounded flows whose predictions can
be trusted at a level comparable to the phenomenological
theory of homogeneous turbulence.

In this paper we attempt to reduce this gap. We offer a
phenomenological theory of wall-bounded flows that is
based on standard ideas [5]; nevertheless, we develop the
theory slightly further than anything that exists currently in
the literature. Our central ambition is to offer a model that
describes, for wall-bounded turbulent flows, the profile of
mean flow and the statistics of turbulence on the level of
simultaneous, one-point, second-order velocity correlation
functions. In other words, the objects that we are after are the
entries of the Reynolds-stress tensor as a function of the
distance from the wall. The model will be presented for plain
geometry; this geometry is relevant for a wide variety of
turbulent flows, like channel and plain Couette flows, fluid
flows over inclined planes under gravity (modeling river
flows), atmospheric turbulent boundary layers over flat
planes, and, in the limit of large Reynolds numbers, many
other turbulent flows, including pipe, circular Couette flows,
etc. Our model is a version of “algebraic Reynolds-stress
models” [5], similar, for example, to the model proposed in
[6]. The main difference is that all the previous models fo-
cused their attention on a description of the turbulent log-law
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region. Separate models were then developed for the near-
wall region [7], followed by interpolations of the final results
to connect to the log-law region. We aim here for a consis-
tent description that is able to properly describe the entire
turbulent boundary layer from the near-wall viscous layer
through the buffer layer up to the fully developed turbulent
log-law region. In particular we want to capture important
buffer layer characteristics like the peak in the turbulent ki-
netic energy which cannot result from any interpolation pro-
cedure between the viscous and log-law regions.

In developing the model we will stress analytical tracta-
bility; in other words, we will introduce approximations in
order to achieve a model whose properties and predictions
can be understood without resort to numerical calculations.
Nevertheless, we will show that the model appears very de-
pendable in the sense that its predictions check very well in
comparison to direct numerical simulations (DNS), including
some rather nontrivial predictions that are corroborated only
by very recent simulations and experiments (which only now
reach the sufficient accuracy and high Reynolds numbers).

In Sec. II we formulate; in Sec. II A we introduce nota-
tions and recall the equations describing the mechanical bal-
ance; in Sec. II B, we state the assumptions and detail the
approximations used in the context of the balance equations
for the components of the Reynolds-stress tensor W;;. The
result of these considerations is a set of five equations for the
mean shear § and W;; which is described in Sec. I C. For
actual calculations this set of equations is still too rich since
it contains 12 adjustable parameters. Eight of these param-
eters control the nonlinear behavior of the system in the
outer layer and four additional parameters govern the energy
dissipation in the viscous sublayer. Clearly, further reduction
of the model is called for. This is accomplished in Sec. III.
First, in Sec. IIT A we consider the full 12-parametrical so-
lution of the model and present a comparison with experi-
mental observations in Sec. IIl A 4. This comparison indi-
cates that an adequate description of the entire turbulent
boundary layer phenomenology can be achieved with only
four parameters instead of 12. We refer to the four-parameter
model as the “minimal model.” In Sec. Il B we reap the
benefit of the minimal model: we find the simple and physi-
cally transparent equations (3.15) for the profiles of the
Reynolds-stress tensor W;;(y) and the mean shear S(y) (y is
the distance from the wall) in terms of the root mean square
of the turbulent velocity v=VW;. Unfortunately, the equa-
tion for the v(y)profile is quite cumbersome and cannot be
solved analytically. Nevertheless, we employ an effective it-
eration procedure that allows reaching highly accurate solu-
tions with one or at most two iteration steps.

Section IV is devoted to a comparison of the predictions
of the minimal model with results of experiments and direct
numerical simulations. In particular, in Sec. IV B we show
that the model describes the mean velocity profile in a chan-
nel flow with 1% accuracy almost everywhere. Only in the
core does the model fail to describe the peak of the mean
velocity that occurs around 5-6 wall units [independently of
Reynolds number (Re)]. For our purposes this mismatch in
not essential. In Sec. IV C we show that the minimal model
provides a good qualitative description of the kinetic energy
profile, including position, amplitude, and width of the peak
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of the kinetic energy in the buffer layer. In Sec. IV D we
show that with the same set of four parameters the model
offers also a good qualitative description of the Reynolds-
stress profiles and the profiles of “partial” kinetic energies (in
the streamwise, wall-normal, and cross-stream directions) al-
most in the entire channel. The final Sec. V presents a short
summary of our results, including a discussion of the limita-
tions of the minimal model. Possible improvements of the
suggested model will have to start by addressing these
limitations.

II. FORMULATION OF THE MODEL

Our starting point is the standard Reynolds decomposion
[5] of the fluid velocity U(r,?) into its average (over time) V
and the fluctuating components u. In wall-bounded planar
geometry the mean velocity is oriented in the (streamwise) X
direction, depending on the vertical (wall-normal) coordinate
y only:

Ulr,)=V(y) +u(r.), V() =Urn)=xV().

(2.1)

The mean velocity and the fluctuating parts are used to con-
struct the objects of the theory which are the components of
the Reynolds-stress tensor W(y) and the mean shear:

dv(y)

S(y) = o

Wij(y) = <Miuj>, (2.2)
We note that in previous applications [8—16] we have em-
ployed a model in which only the trace of W(y) and its xy
components were kept in a simplified description. For the
present purposes we consider all the components of this ten-
sor, paying a price of having more equations to balance, but
reaping the benefit of a significantly improved phenomenol-
ogy. We discuss now the equations relating these variables to
each other.

A. Equation for the mechanical balance

The first equation relates the Reynolds stress W, to the
mean shear; it describes the balance of the flux of mechanical
momentum, and it follows as an exact result from Navier-
Stokes equations and has the familiar form

- W () + 1S(y) = P(y). (2.3a)

W,, on the left-hand side (LHS) is the turbulent (reversible)
contribution to the momentum flux whereas v,S(y) is the
viscous (dissipative) contribution to the momentum flux. The
RHS is the momentum flux generated by the pressure head.
In a channel flow with the pressure gradient p’ =—dp/dx,

P(y)=p'(L-y). (2.3b)

Here L is the half width of the channel. For large
Reynolds numbers near the wall one can neglect the y de-
pendence of P(y), replacing P(y) by its value at the wall:

B. Balance of the Reynolds tensor

The next set of equations relates the various components
of the Reynolds tensor W;;(y) defined by Eq. (2.2). In con-
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trast to Eq. (2.3a) this set of equations is only partially exact.
We need to model some of the terms, as explained below. We
start from the Navier-Stokes equations and write the follow-
ing set of equations:

dw;

dt + €+ == S(Wiy 8+ W)y 65,). (242)
The RHS of these equations is exact, describing the produc-
tion term in the equations for W;,=W,; which is caused by

the existence of a mean shear. On the LHS of Eq. (2.4a),

u; du;
Eij = 2V0<_l_1>
&xk &xk

is the exact term presenting the viscous energy dissipation.
The problem is that €;; involve new objects, which requires
evaluation via W;;. This can be easily, done in regions where
the velocity field is rather smooth, and in particular in the
viscous sublayer, the velocity gradient exists and thus the
spatial derivatives in Eq. (2.4b) are estimated using a char-
acteristic length which is the distance from the wall y. In
order to write equalities we employ the dimensionless con-
stants a;;=1:

(2.4b)

2
€= ez;ls— y;'lsW,J, y;;ls (%ﬁl) . (2.4¢)
In general the constants a;; are different for every i,;.

In the buffer sublayer and in the log-law turbulent region
the energy cascades down the scales until it dissipates at the
Kolmogorov (inner) scale that is much smaller than the dis-
tance y from the wall. Therefore the main contribution to the
dissipation €; from all scales smaller than y is due to the
energy flux—i.e., has a nonlinear character. Due to the as-
ymptotical isotropy of fine-scale turbulence, the nonlinear
contribution should be diagonal in i, j (see, e.g., [5]):

w
€= el =y—5

ij ij g ij> VVE Tr{W}, (253)

where the prefactor % is introduced to simplify equations
below. The characteristic “nonlinear flux frequency” vy can
be estimated using a standard Kolmogorov 41-dimensional
analysis:

o) = s\W) : (2.5b)
again with some constants b~ 1. The “outer scale” of turbu-
lence is estimated in Eq. (2.5b) by the only available char-
acteristic length y, the distance to the wall.

As one sees from Eq. (2.5), the dissipation of particular
component of the  Reynolds-stress  tensor—say,
W, —depends not only on W, itself, but also on other com-
ponents, W, and W__ in our case. It means that ¢;, given by
Eq. (2.5a) leads, in the framework of Eq. (2.4), not only to
the dissipation of total energy, but also to its redistribution
between different components of W;. In order to separate
these effects we divide €; into two parts as follows:

M=ty et

ij ij ij o

(2.6a)
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6“ YW,

ij>

(2.6b)

w
%2=_70%f”%§>%- (2.6¢)
Clearly, 6“ describes the damping of each component W;;
separately, w1thout changing of their ratios, while the trace-
less part e‘“ does not contribute to the dissipation of total
energy and leads only to a redistribution of energy between
components of the Reynolds-stress tensor. This contribution
we will include into the “return to isotropy” term (2.13b),
that will be discussed below.

Actually, we presented €;; as the sum

€ _Edls+él1112’

(2.7)
in which for the total energy dissipation is responsible only
first term on the RHS. In the buffer layer both contributions
to edls—the viscous dissipation evjls and the nonlinear one
6“1 —are important. Their relative role depending on the
teurbulent statistics. We will employ two simple interpola-
tion formulas which lead to two versions of the minimal

model:

€r=T,;W;, (2.8)
L) =77() + ¥y) 8 “sum,” (2.9)
L=y wis(Y) + 72(Y)5ij’ “root.” (2.10)

The versions of the resulting model will be referred to as the
“sum” and “root” versions correspondingly. A priori there is
no reason to prefer one or the other, and we leave the choice
for later, after the comparisons with the data.

The term /;; in Eq. (2.4a) is caused by the pressure-strain

correlations
1 du; Ju;
Po dx;  dx;

and is known in the literature as the “return to isotropy” [5].
Due to incompressibly the constraint /; is a traceless tensor
and therefore does not contribute to the total energy balance,
leading only to a redistribution of the partial kinetic energy
between different vectorial components. Also, this term does
not exist in isotropic turbulence where W;;=1 /3 Wé;;. We
adopt the simplest linear Rota approximation for the “return
to isotropy” term [5], using once more different characteris-

tic frequencies ;;, estimated as follows:

(2.11)

Lij=¥,(3W;; = 6, W), (2.12a)
W(y)
_ — \Wiy _
m@zmiy, by=1. (2.12b)

One sees that [;; has precisely the same structure as EZI 2,

introduced by Eq (2.6¢). Therefore it is convenient to treat
these contributions together, introducing

T 12
Ij=1I;+ &,

(2.13a)
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L;="7,(3W,; - 5,W), (2.13b)

ij

~ rW
3, (0) = by W)

(2.13¢)

Recall that the tensor 1 must have zero trace for any values

of W;;. This is possible only if bxx—b b . =by, b, —b and
consequently

7xx 'VW yzz ;d’ ;xy = ; (2 14)

Thus, representation (2.13b) involves only two free param-

eters by and b.
Equations (2.4) for W,

seven constants a;;, b, bd, and b Our goal is to formulate the
simplest possible model, with a minimal number of adjust-
able constants. The strategy will be now to use experimental
and simulational data, coupled with reasonable physical con-
siderations, to reduce the number of parameters to 4, each
being responsible for a separate fragment of the underlying
physics.

We should stress that we neglect in Eq. (2.4a) the spatial
energy transport term €, caused by the tripple-velocity cor-
relations, pressure-velocity correlations, and the viscosity
[5]. In the high-Re, limit the density of turbulent kinetic
energy becomes space independent in the log-law region.
Accordingly, the spatial transport term is very small in that
log-law region. A more detailed analysis (see, e.g., Fig. 3 in
Ref. [17]) shows that even for a relatively small Re, in the
log-law turbulent region this term is small with respect to the
energy transfer term from scale to scale which is represented
i in the equations above. On the other hand, in the

Wlth ij=xx,yy,zz, and xy involve

by yW,
viscous sublayer the mean velocity is determined by the vis-
cous term and thus the influence of the spatial energy transfer
term can be again neglected. To keep the model simple we
will neglect €, term also in the buffer layer where it is of the
same order as the other terms of the model. The reason for
this simplification, which evidently will cause some trouble
in the buffer layer, is that the energy balance equations used
below become local in space. This is a great advantage of the
model, allowing us to advance analytically to obtain a very
transparent phenomenology of wall-bounded turbulence. It
was already demonstrated in Ref. [14] that the simple de-
scription (2.9) gives a uniformly reasonable description of
the rate of the energy dissipation in the entire boundary layer.
Here we improve this description further, effectively ac-
counting for the energy transfer term in the balance equation
by an appropriate decrease in the viscous layer parameters
aij.
C. Summary of the two versions of the model

For the sake of further analysis we present the model with
the final notation:

=W, () + 1,S(y) = P(y), (2.15a)
[T+ 3%l W = YW - 25W,,, (2.15b)
[T, +3%alW,, = YaW, (2.15c¢)
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[T +3%W,. =YW, (2.15d)

[T, +3YIW,, =-SW,,. (2.15¢)

In the traditional theory of wall-bounded turbulence one em-
ploys the “wall units” u,, 7 and ¢ for the velocity, time, and
length [5] which for a fluid of density p are

_ /PO _ W _ M
MT= —’ T= —, €T= ’,__
p 0 VpPy

Using these scales one defines the wall-normalized dimen-
sionless objects

(2.16)

yr= % Vi(y) = V,;(y)’ vi(y) = UTu(y) etc. ,
St=S8r, (y) (y) etc. (2.17)
u?

T

In our model we can use the property of locality in space to
introduce “local units”:

S PO N S
ur(y) p ’ T(y)_P(y)s f7'(}7) \’%,

(2.18)

similar to traditional wall units, Eq. (2.16), but with the re-
placement P,— P(y), and “locally normalized” dimension-
less objects, analogous to Eq. (2.17):

s Y vr(y)
y+ = = , UT()’ ) = T
€ r(}’) MT(y)
~ o W
SHyH) = S1y)., Wiy = 72@ etc.  (2.19)
uz(y)
Then the dimensionless version of Eq. (2.15a) reduces to
- Wi’y +5t=1, (2.20a)
(L +3Y)WE =YW - 28" W%, (2.20D)
(5, + 3%)Wiy = YaWt, (2.20¢)
(T +35)W., = YiWr, (2.20d)
(UL, + 3% Wi = - S*Wi, . (2.20e)

Introducing v¥= VW* we can write
2 i
i), =5
ij s ij>
y y

b2 2

for the sum model, (2.21a)

Ff i —5 6, for the root model,
! OO H*
(2.21b)
~i bt ~, bvt )
=" Y= for both versions. (2.21c¢)
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III. ANALYSIS OF THE MODEL
A. Solution of the seven-parameters version of the model

1. Solutions in the viscous sublayer

The four equations (2.15b), (2.15¢), (2.15d), and (2.15¢)
can be considered as a homogeneous “linear” set of equa-
tions for W,,, Wy W, and Wy (with coefficients that are
functions of W). They can have a trivial solution W=0 for

which Eq. (2.15a) gives

S=Pyvy, V=yPy/vy, W;;=0,= laminal layer.

(3.1)
The complete absence of turbulent activity in the viscous
layer in our model is a consequence of leaving out the energy
transport in physical space.
2. Analysis of the turbulent solution
Equations (2.20b), (2.20c), (2.20d), and (2.20e) have a

nontrivial “turbulent solution” with W# # 0:

WE TE 45 Th+%

W = 4w T 3.2a
w0 F_fy +3% TE+3%; (3:2)
. WESE WiV
W Wit G2
yy + 7d 2 + ’Yd
— WESEYE
t Yd (3.2¢)

W = ~. . Y
4 (rjy+3yi)(r+ +3%5)

»y
if its determinant A vanishes. The solvability condition
A=0 gives

It +3% N
(5% = N_xyi_xyN_[Fi-Xri FT + 27§(F§XFT: . F;T;XFIZ
ny‘y(rz'.z +3 722) W= ¥y M

PO 3GROLATLATDL  G2a)

Substitution ny and S* in Eq. (2.20a) gives a closed equa-
tion for the function W#(y*) (or for v¥= \W*). To present the
resulting equation in explicit form, introduce

AW =St BY) = - Wi/ShF,

RijE F;L]/U-I:, ;dE;(ii/Ui, ;E'\'}ﬂ:/vi
Using Egs. (3.2d) and (3.2c) we find
R, +3F N
A%(vH) = =—2—<—[R.R,,R,, +274(RR,, + R.R,,
®) 2rg(R. + 3rd)[ e al y} “

+RR.) +3r5(R + R, + R,

(3.3)

rq

B(v¥) = S —.
W)= R+ R, + 370

(3.4)

Now Eq. (2.20a) can be presented as
AHv1 +BwHvi]=1. (3.5)

Together with Eqgs. (3.2) this provides the full solution of
Egs. (2.20).
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3. Outer layer, y*>50

In the outer layer, far away from the wall, all the viscous
terms in Egs. (2.20) can be neglected. In this case Egs. (2.21)
for both the sum and root minimal models give

=56, (3.6)

and Egs. (3.2b), (3.2c), and (3.2d) and the solution (3.15)
simplify drastically:

Weby

Wi =Wh=—-
b+3b,

=W, = (3.7)
By analyzing the results of experiments and numerical simu-
lations (as discussed in Sec. IV) we found that in the outer
layer fozéw‘t and Wf,yzwzzziWi. The model reproduces
these findings if we choose

b=bhy. (3.8)

Using this relation and the solution of Eq. (2.20a), Wﬁy=—1,
in the rest of Egs. (2.20), one finds

[aA7 V7.
WE = @’ l=<é) (3b)3/4.
b K 2

Here « is nothing but the von Karman constant, which de-
termines the slope of the logarithmic mean velocity profile in
the log-law turbulent region:

(3.9)

V(y")=«k"Iny*+ C, for z* =30,

k= 0436, C=6.13. (3.10)

The experimental value of « and the intercept C were taken
from [20]. Using the simulations result W*=6.85 of Ref.
[17], which is reproduced in Fig. 6, we find

b=0256, b=~ 0.500. (3.11)

4. Reduction of the number parameters: The minimal
model

The parameters a;; are responsible for the difference be-
tween the energy dissipation and the energy transfer in the
viscous sublayer. To further simplify the model we reduce
the number of independent parameters a;; from 4 (a,,, ay,,
a,, and a,,) to 2, denoted as a and a. Among various possi-
bilities [including a,=a,.=a, a,=a, a,=(a+a)/2] we
choose a parametrization similar to the situation with the
outer layer parameters:

(3.12)

~
ay=da.

a;=da,
The analytical solution given in next section III B simplifies
considerably with the four-parameter version of the model. A
further simplification a=a could be considered, but we rule it
out since it yields a monotonic dependence of the turbulent
kinetic energy W*(y*) with y*, while experimentally there is
a pronounced peak of W*(y*) in the buffer sublayer; see Sec.
IV C. We thus consider the four-parameter model as the
“minimal model” (MM).
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Below we will use mostly the following set of constants:

~

a=1.0, a=10.67, sum MM, (3.13a)
a=1.0, =12.95, root MM, (3.13b)
b=0.256, Z =0.500, both MMs. (3.13c)

This choice is based on the analysis of the simulational
and experimental data presented in Sec. IV.

Notice that eliminating b from Egs. (3.9) (valid for both
sum and root models) one gets

vt = 126h = 6. (3.14)

With the simulational values k=0.436 and W*=6.85 this re-
lationship is valid with a precision that is better than 1%.

B. Analysis of the minimal models

1. a,a parametrization of the general solution

With the minimal parametrization, given by Eq. (3.12),
the solution (3.2) takes on a simpler form:

Wi =W ——W Wi = 2w (3.159)
4y 20,
E | bvtv, /6bbv1v3v4
2 6/I;U3U4,
(3.15b)

Here we introduced the following shorthand notation v; for
the sum MM:

. a® B a®
Ul—l)"'rb_yi, Uy =0V +2byi,
~ 2
. a . a
v3=v +—<—, vys=0" . (3.16a)
3by* 4by*
For the root MM instead of Eq. (3.16a) we take
_ 2, a* =vl+vi =vl+3>v‘4F
o byh 2T 2 T4
~ o
<+ (b=-b) v+ —— (3.16b)
(3by*)?

With the minimal parametrization Eq. (3.5) takes a very
simple explicit form

12;1;i /24Zr r
o2 4 —— = #, r= vj/vT‘, (3.173)
y brl ’

This form of the equation for v¥ serves below as a starting
point for an approximate (iterative) analytical solution. One
can also seek an exact solution by numerical methods; to this
aim, it is better to use the following form of the same
equation:
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b . b bb
F(v¥,y%H) = ——<v*v, + viv3v4[—vizvl - 1} + —201u§ui
24b y y

-0. (3.17b)

Equation (3.17b) has seven roots for the sum MM, (and
27 for the root MM) but only two of them, denoted as vi, are
real and positive for large enough y*. These two roots ap-
proach each other upon decreasing the distance from the
wall. At some value of y* these roots merge:

U-jl:—(yvs) = Uf(yvs) =0 < Ufo- (318)

The values y,, and v as functions of the problem parameters
follow from the polynomial (3.17b):

IF (v*,y%)

=0 (3.19)

Fu*,y9) =0,
For y* <y, there are no physical (positive-definite) solutions
of Eq. (3.17b). This is a laminar region that was discussed
before as the viscous sublayer. In Table II, below, we present

the corresponding values of y,, and v« for b=0.256,b=0.5
and various pairs of a, a.

2. Iterative solution of Eq. (3.17a) for rms turbulent velocity
v¥ (%)

To develop further analytic insight we employ an iterative
procedure to find an approximate solution for vi(y) for all
y*>y,., outside a narrow region (of width less than unity)
about y,.. For this goal we forget for a moment that r; de-
pends on v* and consider Eq. (3.17a) as a quadratic equatlon
with a positive solution:

2 ~
\/\/24br3r4 (6[9}’3”4) 6br3r4
br, G yi '
However, r; does depend on v¥. For example, for the sum
MM,

(3.20)

i a ¥ a
=1+ , =1+—,
rl(v ) byil)vif rZ(U ) Zbyivi
. a> a>
RE) =1+~ nE)=l+ . (21
3by*v by*v

Nevertheless, for very large y* all r;—1 and an asymptotic
solution of Eq. (3.20) reproduces the asymptotic value of
vi=vi=(24b/b)"*, given by Eq. (3.9).

A much better approximation for v*(y¥) (denoted as vl) is
obtained using in Ref. (3.20) a v*-independent r_l,o—r](vw)
instead of r;=1:

~ 2 ~
' 24br3 040 6br3 ors 0 6br3 ol
Ui = b £ a ¥ ’
rl 0 y y

(3.22a)

Clearly, this iterative procedure can be prolonged further and
one can find the velocity v* at the n+1 iteration step,
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FIG. 1. (Color online) Log plots of the exact solution for mean
velocity profile V¥(y*) and approximate profiles Vi(yi), computed
on the nth iteration step for n=1,2,3,4 for the sum MM with
constants, taken from Eq. (3.11). All plots practically coincides
within the linewidth.

v; +1(y ), using the relations r; ,=r; (v '), found with the ve-
locity vi of the previous, nth step:

~ 2 ~
\/\/24ng nr4n <6br3,nr4,n> 6br3,nr4,n
n+l brln yi yi .

(3.22b)

The numerical verification of the iteration procedure is given
in the Appendix . The conclusion is that already the first few
iterations are sufficiently accurate for all practical purposes:
often one can use the first iteration and occasionally the sec-
ond one.

Remarkably, the first iteration can be formulated directly
in terms of the basic Egs. (2.20) by replacing the turbulent
velocity profile v¥(y*) in Egs. (2.21) for Fjj and ;f; by its

asymptotic value in log-law region v’ =(24b/b)"*.

3. Iterative solution for the mean velocity and Reynolds tensor
profiles
Consider first the resulting plots for the mean velocity
profile, V¥(y¥), computed with the help of turbulent velocity
v} at the nth iteration step:

£(pF) = Vgt :
Vi(y*) = yys + f S, (EdE, y >y

Yys

(3.23)

Here S%(x) denotes S¥(x), given by Egs. (3.15), with v¥=v.
Figure 1 displays plots of Vi(y¥) for n=1,2,3,4 and the
“exact” (numerical) result V#(y*). All the plots almost coin-
cide within the linewidth. This means that for the purpose of
computing Vi(yi) one can use the first appr0x1mat10n U}L
given by Eq. (3.22a) instead of the exact solution v*.

Next we present in Fig. 2 log plots for the trace of the
Reynolds-stress tensor W‘,T;(yjf'), (computed with the nth itera-
tion step for n=1,2,3,4) together with the “exact” numeri-
cal solution W#(y*) for the sum MM. Evidently, the iterative
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FIG. 2. (Color online) Log-plots of the iterative W:,I;, n=1-4 and
“exact” numerical solutions (thick solid line) for the trace of the
Reynolds tensor in the sum MM with constants, taken from Eq.
(3.11). Plots for W% and Wi coincide within the linewidth.
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procedure for the kinetic energy does not converge as rapidly
as for the mean velocity profile: one can distinguish the
plots of Wf(yi), Wg(yi), and W%(yi); the plots of Wg(yi)
and Wi(yi) coincide within the linewidth. Nevertheless, for
y¥>5 (i.e., in the buffer layer and in the outer region) al-
readly the first iterative solution provides a very reasonable
approximation to the exact solution for the kinetic energy
profile.

IV. ANALYSIS OF THE NUMERICAL AND
EXPERIMENTAL DATA AND COMPARISON WITH THE
MODEL PREDICTION

In this section we analyze and compare the predictions of
the minimal models to results of experiments and compre-
hensive direct numerical simulations of high-Re channel
flows. We refer to results that were made available in the
public domain by Moser, Kim, and Mansour [17], to large-
eddy-simulations performed by Casciola [18] and to recent
laboratory experiments in a vertical water tunnel by An-
grawal, Djenidi, and Antonia [19]. The choice of the outer

layer parameters b;; and b;; is based on our analysis of the
anisotropy in the log-low region, presented in Sec. IV A. The
relation between the viscous layer parameters a vs a is based
on the comparison between the direct numerical simulation
(DNS) and model mean velocity profiles, presented in Sec.
IV B. The final choice of a and a is motivated by the DNS
data for the kinetic profile which is compared with the model
prediction in Sec. IV C. Section IV D is devoted to a com-
parison of the model results with the DNS profiles of the
Reynolds stress W“ and partial kinetic energies fo, ny,
and W,

A. Anisotropy of the log-law region: Relative partial Kinetic
energies R, R,,, and R, in the outer layer

The anisotropy of turbulent boundary layer can be char-
acterized by the dimensionless ratios
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FIG. 3. (Color online) DNS profiles of the relative kinetic ener-
gies in the stream wise, wall-normal, and span wise directions R,,,
R,,, and R._., respectively. Solid lines: Re)=590. Dot-dashed lines:

Re, =395. Horizontal dashed lines show levels 0.5 and 0.25.

Wily®) _ Wiy
Wit WO

R;(y") (4.1)
This anisotropy plays an important role in various phenom-
ena and was a subject of experimental and theoretical con-
cern for many decades; see, e.g., [1,5]. Nevertheless, up to
now the dispersion of results on the subject appears quite
large. There is a widely spread opinion, based on old experi-
ments, that the wall-normal turbulent fluctuations W, are
much smaller than the other ones. For example, in the clas-
sical textbook by Monin and Yaglom [1] it was reported that
for a neutrally stratified log-boundary layer R, =54%,
R,,=6%, and R,,=40%. This definitely contradicts recent
DNS results for Re, =590 which are available in Ref. [17],
as shown in Fig. 3. Note that there is a region about
100<y+<§Re>\ where the plots of R;(y*) are nearly hori-
zontal, as expected in the log-law region. From these plots
we can conclude that is this region R,,~53% which is close
to the value 54%, stated in [1]. Nevertheless, the DNS data
for Ry, and R, are completely different. From Fig. 3 one
gets R, ~22% and R_.~27%. Thus R, can be considered
roughly equal to R .. We should mention here that various
models of turbulent boundary layers give R,,=R_. in the
asymptotic log-law region. We propose that the difference
between R, and R, which is observed in Fig. 3 is due to
the effect of the energy transfer. This effect practically van-
ishes in the asymptotic limit Rey — 0, but is still present at
values of Re, which are available in DNS [17]. Indeed, for
both values of Re, shown in Fig. 3, W, =W __ in the center of
the channel, where the energy flux vanishes by symmetry.
Clearly, there is no energy flux also in space homogeneous
cases; for example, for a constant shear flow, in which, ac-
cording to the model, one should expect W, =W, in the
entire space. '

Our expectation that W,,=W_,, which is based on symme-
try considerations, is confirmed by the large-eddy simulation
(LES) of the constant shear flow [18]. As one sees in Fig. 4
in this flow R,,~0.46, while Wy, =W, =0.27.
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FIG. 4. (Color online) Relative components of the Reynolds

stress tensor W;;, Eq. (4.1), for for constant-shear flow. Results of
the LES [18]. Lines serve only to guide the eye.

As stated, for sufficiently large values of Re, the energy
transfer terms should almost vanish in the log-law region
and, according to our model, one can expect in that region
W,,=W_ also in the channel flow. This viewpoint was con-
firmed in the aforementioned laboratory experiment [19] in a
vertical water channel with Re, =1000, reproduced in Fig. 5.
The experimental values of R,,, R,,, and R, in the log-law
turbulent region are in excellent quantitative agreement with
the values R,,=0.5 and R,,=R ., =0.25 shown in Figs. 3 and
5 by horizontal dashed lines.

Table I summaries the DNS, LES, and experimental val-
ues of the relative kinetic energies in comparison with the
model expectations. The conclusion is that, in contradiction
with the old and still widespread viewpoint [1] that the wall-
normal turbulent activity is strongly suppressed, R, <0.1,
the turbulent kinetic energy in the log-law region is distrib-
uted in a very simple manner: the streamwise component
contains a half of total energy, R, = %, and the rest is equally
distributed between the wall-normal and spanwise compo-

FIG. 5. (Color online) Experimental profiles of the relative
kinetic energies R; in a vertical water channel with Re,=1000
according to Ref. [19]. The solid lines serve to guide the eye. The
dashed lines show the model prediction in the log-law region

R=0.5 and R,,=R,.=0.25.
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TABLE I. Asymptotic values of the relative kinetic energies R;;
in the log-law region y*>200 taken from DNS (Re,=395,590)
[17], LES [18], and experiment in a water channel with Re,
=1000 [19]. The last column presents the predictions of the mini-
mal model.

R, ii| DNS (17) LES (18) Water channel (19) Model
xx ~(0.53 ~(.46 0.50+0.01 0.50
yy ~(0.22 ~(0.27 0.25+0.02 0.25
b4 ~0.27 ~(0.27 0.25+0.02 0.25

nents: Ry),=72zz=%. As shown in Sec. IIl A4, this very
simple energy distribution is predicted by the minimal model
if one assumes that the characteristic nonlinear times scales
in the energy transfer term and in the return-to-isotropy term
are identical.

B. Mean velocity profile in channel flows

To compute the mean velocity profile V*(y*) in our ap-
proach we need to connect first S*(y*) with S*(y*). Accord-
ing to the definitions (2.17)—(2.19)

+ +
S+(y+)=<1_y_)si<y+ 1- Yy )’
Re)\ Re)\

(4.2)

where

Re, =L/(, (4.3)

and y*>y,.. For y* <y, we can take S*(y*)=1 and integrate
the resulting shear over the distance to the wall with the
no-slip boundary condition. The resulting profiles V*(y*) for
Re), =590 and the parameters (3.11) are shown in Fig. 6 as a
dashed line for the sum MM and as a dot-dashed line for the

25 T T T
20— 7 -
— DNS
F —- Sum-MM 1
-=+ Root-MM

(U= 1 ! 1 | 1 1

| 1 11
100 200 500

1 2 5 10 20 50

FIG. 6. (Color online) Mean velocity profiles V*(y*): The solid
blue line: DNS data [17] for Re,=590. The dashed green line: ana-
lytical profile V*(y*) for the sum MM. Dash-dotted red line for the
root MM using the parameters, Eq. (3.11). The relative deviation of
the analytical predictions from the DNS data is about 1%, smaller
for the root MM than for the sum MM.

PHYSICAL REVIEW E 73, 016303 (2006)

root MM. The DNS profile of [17] for the same Re, is shown
as a solid line. There is no significant difference (relatively
less than 1%) between these plots in the viscous sublayer,
buffer, and outer layers, where y*<300—i.e., in about 50%
of the channel half-width L*=Re,=590. This robustness of
the mean velocity profile V*(y*) is a consequence of the fact
that V*(y*) is an integral of the mean shear S* which is
described very well both in the viscous and the outer layers.

Notice that our model does not describe the upward de-
viation from the log low which is observed near the mid-
channel (of about 5-6 units in V*, independent of the Rey-
nolds number). We consider this minor disagreement as an
acceptable price for the simplicity of the minimal model
which neglects the energy transport term toward the center-
line of the channel. This transport is the only reason for some
turbulent activity near the centerline where both the Rey-
nolds stress W, and the mean shear § vanish due to symme-
try. Just at the centerline the source term in our energy equa-
tion, —2SW,,, is zero and the missing energy transport term
is felt.

The plots in Fig. 6 have a reasonably straight logarithmic
region from y*=20 to y*=200. On the other hand, the
Reynolds-stress profile at the same Re, =590 shown in Fig.
8, below, has no flat region at all. Such a flat region is ex-
pected in the true asymptotic regime of Rey—o°, where
W+=—1. Therefore, if one plots the model profiles V* at dif-
ferent Re, and fits them by log-linear profiles (3.10), one can
get a Re, dependence of the “effective” intercept in the von
Karman log law. We think that this explains why the mea-
sured value of the log-low intercept can depend on the Rey-
nolds number and on the flow geometry (channel versus
pipe): both in DNS and in physical experiments one usually
does not reach high enough values of Re,.

C. Profiles of the total kinetic energy density and the choice of
the pair a,a

The quality of the profiles V*(y*) calls for a bit more
thinking. In fact, one find that the minimal model produces
practically the same profiles V*(y*) not only for the param-
eters (3.13) but for a wide choice of the pairs a,a—for ex-
ample, for a=2 and a=8.6. Actually, for any 0<a =<4 one
can find a value of @ that gives a mean velocity profile in
good agreement with Fig. 6. In other words, in the (a,a)
plane there exists a long narrow corridor that produces a
good quantitative description of V*(y*). Within this corridor
there exists a line that provides a “best fit” of V*(y*), mini-
mizing the mean-square deviation SV*,

SV = V([Vim(rh) = Vs P,

of the model prediction Vy,(y*) from the DNS profile
Vins(r*) in the inner region y*<<50. Some of the best pairs
are given in Table II together with the corresponding values
of 8V*. Table II also presents values of y, and v; recall that
for y* <y, v¥=0, for y*=y,+0 there is a jump of v* from
zero to v¥=v.. The most striking difference for different
(a,a) pairs is in the behavior of the Reynolds stress profiles
W#(y*) that can be used to select the best values of these
parameters.

(4.4)

016303-9



L’VOV, POMYALOV, PROCACCIA, AND ZILITINKEVICH

TABLE II. Optimal values of @ for a given value of a, that 6V*
of Eq. (4.4). For optimal pairs (a,a) in the sum_and the root ver-
sions of the minimal model (denoted as = and \ correspondingly)
we present the values y,, of y¥, separating the viscous solution with
v¥=0 from turbulent regime with v+=0v%(y,+0). The last two col-
umns present the y* position, y,,y. of the maximum of the kinetic
energy and the corresponding values of W = W(ya)-

MM a a V3 Vvs U+ Vimax  WE

max

E 0.1 104 029 1.5 0.017 21 8.33

0.1 120 025 1.1
0.25 109 025 24

0.008 18 8.32
0.061 22 8.48

M -

0.25 121 025 2.1
0.5 1.1 025 34

0.016 19 8.36
0.159 22 8.47

M -

0.5 126 0.17 34
1.0 107 022 48

0.247 19 8.50
0.401  24.6 8.24

M -

1.0 129 015 49
1.5 9.7 020 57

0.234 19.2 8.59
0.600 27 7.76

1.5 129 0.16 438
2.0 8.6 0.19 64

0.743 19 8.58
0.783 27 7.26

M

2.0 11.8 017 6.7
4.0 29 0.21 7.2

0.743 20 8.13
0.630 - -

M

v 4.0 6.3 046 85 1.04 - -

Clearly, the minimal model with only four fit parameters
cannot fit perfectly the profiles of all the physical quantities
that can be measured. Therefore the actual values of ¢ and a
should be determined with a choice of the characteristics of
turbulent boundary layers that we desire to describe best.
Foremost in any modeling should be the mean velocity pro-
file which is of crucial importance in a wide variety of trans-
port phenomena. Next we opt to fit well the profile of the
kinetic energy density [or, equivalently, the profile of the
Reynolds stress tensor trace W#(y*)]. Figure 7, upper panel,
shows the DNS profiles of the trace of the Reynold-stress
tensor W*(y*) for Re, =590 (solid lower line) and Re, =395
(dashed lower line). There are no plateaus in these plots,
meaning that these values of Re, are not large enough to
have a true scale-invariant log-law region. Nevertheless, the
plots of

+

-1
wi<y+>=(1—g ) W*(y*) (4.5)
)\

(shown in the same upper panel of Fig. 7) display clear pla-
teaus, according to the theoretical prediction for Rey — .
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FIG. 7. (Color online) Upper panel: DNS profiles of the trace of
the Reynolds-stress tensor (twice of the total kinetic energy densi-
ties) in two normalizations, W* and W#. Solid blue line: Re,=590.
Dot-dashed black line: Re,=395. Lower panel: comparison of the
DNS profile W¥(y*) for Re, =590 (blue solid line) with the results
of the sum MM (green dashed line) and the root MM (red dot-
dashed line) with constants, Eq. (3.13).

This means that the decay of W*(y") is related to the de-
crease of the momentum flux P(y) and that the dimensionless
“t” variables, Eqs. (2.19), that use the y-dependent value of
the momentum flux P(y) represent the asymptotic physics of
the wall-bounded turbulent flow, at lower values of Re, than
the traditional “wall units” (2.17), which are based on the
wall value of the momentum flux Py,

To compare the model prediction with simulational results
we have to relate ij(y*) with Wi,(y*) in channel flows. Ac-
cording to Egs. (2.17)—(2.19)

+ +
Y )W?j(f . ) (4.6)
Re}\ Re}\

Wi(y*) = (1 -

and similar equations for the its trace W*(y"). Figure 7 shows
a peak of WH(y*), Wi =W (y.) =9.8 at y* =y, =~ 18. As
one sees from the Table II, the minimal model reproduces the
peak in W#(y¥) with an amplitude of about 8—8.6 for a=<2.
To be specific we choose a=1 in both versions of the mini-
mal model: sum MM and root MM. With this choice we plot
in Fig. 7, lower panel, both theoretical profiles W(y*) and

016303-10



PHENOMENOLOGY OF WALL-BOUNDED NEWTONIAN...

— DNS
—- Root MM

0.8~

021

. | .
00 100

| | |
200 300 400 500 600

L T I I T T T T]
— DNS

0.8 —- Root MM B
0.6 -

+ . L J

=
= 04l ]
02+ _
0 1

I | | I
50 100 200 500

FIG. 8. (Color online) Comparison of the DNS Reynolds stress
profiles [W}| (blue solid lines) for the channel flow with
Rey =395 and 590 with the root MM profiles with constants (3.13),
red dashed lines. Upper panel: linear coordinates. Lower panel: the
same plots in the linear-log coordinates.

Wf—(y*) in comparison with the simulational profile
Wins(y). It appears that the root MM is in better correspon-
dance with the simulation than the sum MM. However, for
the sake of analytic calculations, the sum MM is simpler.
Therefore, again, the choice of the versionof MM depends on
what is more important for a particular application: calcula-
tional simplicity or accuracy of fit.

D. Profiles of the Reynolds stress tensor

In Fig. 8 we present (by solid lines) simulational profiles
of the Reynolds stress W;y(yJ’) for Re, =395 and Re, =590 in
comparison with the model predictions (dashed lines) for the
root MM. The upper panel shows the comparison in linear
coordinates, the lower panel in linear-log coordinates, stress-
ing the buffer layer region. In the model profiles we used the
values of parameters (3.13), chosen to fit the simulational
profiles for the mean velocity and the kinetic energy. In other
words, in comparing the profiles of Wi (y*) in Fig. 8
no further fitting was exercised. Having this in mind, we
consider the agreement as very encouraging. The only differ-
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FIG. 9. (Color online) Comparison of the DNS (solid lines) and
root MM results (dashed lines) for partial kinetic energies profiles
in the channel flow with Re, =590. The model parameters are taken
from Eq. (3.13).

ence between the model predictions and the simulational
profiles of W;\,(y") is in a steeper front of the model profiles
for y*<20. This is again because the model does not account
for the energy transfer that can only flatten the front. As
already mentioned, even for Re=590 the maximum value of
the Reynolds stress does not reach asymptotic value |W;)|
=1, as it should in the true log-law region. The correspond-
ing comparison for the sum-MM looks very similar and is
therefore not shown.

Next, we present in Fig. 9 the simulational and root MM
profiles of the diagonal components of the Reynolds-stress
tensor Wj(y*) for the channel flow with Re,=590. Solid
lines present simulational profiles, dashed lines the model
profiles. The streamwise and spanwise profiles W} (y*) and
W;Z(y+) are in good agreement in the most of the channel,
70<y*<470, while for the wall-normal component, the
model profile W} (y*)=W (y*) and differs from the simula-
tional one. The model also predicts quantitatively an increase
in the streamwise part of the kinetic energy and a decrease in
the span wise and wall-normal components in the buffer
layer which is observed in simulations. The physical reason
of this is simple: as is well known, the energy from the mean
flow is transferred only to the stream wise component of the
turbulent fluctuations. Accordingly, in the model one sees the
energy production term (—2SW,,) only in the RHS of equa-
tion for W,,. The energy redistributes between other compo-
nents due to the “return-to-isotropy” term I;;, Eq. (2.13b),
with isotropization frequency «1/y. The relative importance
of I;; (in comparison with the energy relaxation term) de-
creases toward the wall due to the viscous contribution
«1/y%. Accordingly, near the wall only a small part of the
kinetic energy can be transferred from the streamwise to the
wall-normal and the span wise components of the velocity
during the relaxation time (oc1/I"). Also, the model describes
well the part (about 50% in the outer layer) of the total
kinetic energy that contains the streamwise components.

In the core of the flow (y*>450) the model gives smaller
values of all components W}, as compared to simulations and
experiments. This is again because the model neglects the
energy transfer toward the centerline of the channel, where
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FIG. 10. (Color online) Profiles of the flatness of the x, y, and z
components of the turbulent velocity fluctuations, DNS data [17]
for Re,=590. The horizontal dotted line shows Gaussian value for
the flatness, equal to 3.

the energy input into turbulence, —2SW,,, disappears due to
the symmetry reason.

As before, there is a quantitative disagreement between
the model and simulations in the buffer layer. One can relate
this with the fact that the model neglects the energy flux
toward the wall, which plays a considerable role in the en-
ergy balance. The minimal models are local in space, but this
effect can be effectively accounted for by an appropriate
choice of the dissipation constants, taking a,,>a, =a,. We
do not propose to take this route; in the buffer layer, the
turbulent flow is strongly affected by highly intermittent
events (coherent structures) connected with the near-wall in-
stabilities of the laminal sub layer. This is confirmed by the
very large values of the flatness (above 30), as shown in Fig.
10. Only for y*>50 does the flatness reach the Gaussian
value of 3 and one can successfully utilize various lower-
order closure models for describing wall-bounded flows.

V. SUMMARY: STRENGTH AND LIMITATIONS OF THE
MINIMAL MODEL

The minimal model as formulated in this paper is a ver-
sion of the algebraic Reynolds-stress models. Its aim is to
describe, for wall-bounded turbulent flows, the profile of
mean flow and the statistics of turbulence on the level of
simultaneous, one-point, second-order velocity correlation
functions—i.e., the entries of the Reynolds-stress tensor W;.
The model was developed explicitly for plain geometry, in-
cluding a wide variety of turbulent flows, like channel and
plane Couette flows, fluid flows over inclined planes under
gravity (modeling river flows), atmospheric turbulent bound-
ary layers over flat planes, and, in the limit of large Reynolds
numbers, many other turbulent flows, including pipe, circular
Couette flows, etc.

In developing a simple model one needs to decide what
are the physically important aspects of the flow statistics,
those which determine the mean-flow and turbulent transport
phenomena. The choice of the Reynolds-stress approach was
dictated by the decision to emphasize an accurate description
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of the V(y) and W;(y) profiles. The main criteria in con-
structing the model were simplicity, physical transparency,
and maximal analytical tractability of the resulting model.
That is why we took liberty to ignore the spatial energy flux,
and, thanks to the plain geometry, to estimate the spatial
derivatives and the outer scale of turbulence using the dis-
tance to the wall y. The same motivations led to choosing the
simplest linear Rotta approximation of the “return to isotropy
term” [21] and the simplest dimensional form of the nonlin-
ear term for energy flux down the scales, also in agreement
with [21].

By proper parametrization the number of fit parameters
was reduced from 12 to 4. Two of these, a, and a, are re-
sponsible for the viscous dissipation of the diagonal, W;;, and
the off-diagonal, W,,, components of the Reynolds-stress
tensor. The other two parameters—b and b—control the non-
linear relaxation of W; and W,,. It appears that one cannot
decrease the number of fit parameters furthelr~ with impunity.

The outer-layer parameters b=0.256 and b=0.500 where
chosen to describe the observed constant values of von
Kéarmén in the log law (3.10) and the asymptotic level of the
density of kinetic energy. The viscous layer parameters were
chosen to describe the observed values of the intersection C
in the von Kdrmén log law (3.10) and the peak of the kinetic
energy in the buffer sublayer. The resulting set of five equa-
tions for the mean shear S(y), Reynolds stress W, and W,,,
W,,, and W__ with just four fit parameters is referred to as the
minimal mode.

As demonstrated in Sec. IV the minimal model with the
given set (3.13) of four parameters describes five functions.

(i) The mean velocity profile V(y) is described with an
accuracy of =1%, almost throughout the channel (except of
small velocity defect in the core of the flow); cf. Fig. 6.

(ii) The Reynolds stress profile W,(y) is also described
with an accuracy of a few percent (except in the viscous
layer y* <5 in which W, does not contribute to the mechani-
cal balance); cf. Fig. 8.

(iii) The total kinetic energy profile 1/2W(y) is repro-
duced with reasonable (semiquantitative) accuracy, including
the position and width of its peak in the buffer sublayer; cf.
Fig. 7.

(iv) The profiles of the partial kinetic energies, %Wxx(y),
%Wyy(y), and %sz(y), are reproduced (see Fig. 9), including
the simple %—J-l—j-‘ distribution in the asymptotic outer re-
gion. This distribution is supported by recent experimental,
DNS, and LES data, as shown in Figs. 3, 4, and 5.

We consider all this as good support of the minimal
model; too much data are being reproduced to be an acci-
dent. It appears that the minimal model takes into account
the essential physics almost throughout the channel flow.

On the other hand, one should accept that such a simple
model cannot pretend to describe all the aspects of the tur-
bulent statistics in wall-bounded flows. For example, the
minimal model ignores the quasi-two-dimensional character
of turbulence and the existence of coherent structures in the
very vicinity of the wall. The minimal model does not at-
tempt to take into account many-point and high-order turbu-
lent statistics, including three-point velocity correlation func-
tions and pressure-velocity correlations, responsible for the
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spatial energy flux and for the isotropization of turbulence.
Finally, our choice of dissipation term definitely contradicts
to the near-wall expansion (and see Sec. 11.7.4 of [5]), in
disagreement with various known improvements of [21]. We
propose that all this is a reasonable price for the simplicity
and transparency of the minimal model, which is constructed
with emphasis on the fundamental characteristics V(y) and
W,;(y) which are crucial for most applications.

We trust that a proper generalization of the minimal
model will be found useful in the futures in studies of more

complicated turbulent flows, laden with heavy particles,
bubbles, etc.
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APPENDIX: VALIDATION OF THE ITERATIVE
PROCEDURE

To see how the iterative procedure described in
Sec. III B 2 works, we plotted in Fig. 11 iterative profiles of
the turbulent velocity vi(y*) for n=1,...,5 together with
the (numerical) solutions of Eq. (3.17a), vf(yi) (the thick
solid line) and v*(y*) (dot-dashed curve). The horizontal
straight line presents the asymptotic value v%. The critical
point {vi ,yf,s} is shown by a black circle. Our analysis shows
(and see also Fig. 11) that already the simple equation
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FIG. 11. (Color online) Log plots of functions v¥ ~2.62 (hori-
zontal straight line) and profiles vi(yi) in the sum MM for n=1 (the
dashed line), 2,3,4,5 together with the “exact” (numerical) solu-
tions of Eq. (3.17a), vf(y*) (the thick solid line) and v*(y¥) (dot-
dashed line). Constants are given by Egs. (3.13). For this choice the
critical point (designated as a black circle) corresponds to vi=0.4
at y: ~4.9.

(3.22a) gives the relative accuracy (with respect to v%) better
than 1% for y*>30. The second iteration works with this
accuracy in a wider region y*> 10 the third iteration gives a
1% accuracy for yiQS, which is about the critical value
yf:,sz4.8. Unexpectedly, the approximate solutions work
even below the y, where exact solution is v¥=0. One ob-
serves with increasing n the widening of the region, in which
v,f is practically indistinguishable from zero. The overall
conclusion from these observations is that already the fist
few iterations give a very good accuracy for all practical
purposes, and very often one can use only the first or the
second iteration.
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